Troubleshooting
Common issues and solutions.
Token count not decreasing
Problem: Tokens increase instead of decrease Cause: Using v1.5.0 (had accumulation bug) Solution: Upgrade to v1.5.1+
pip install --upgrade vidurai
python -c "import vidurai; print(vidurai.__version__)" # Should show 1.5.1+
High-threshold recall returns few results
Problem: recall(min_importance=0.7) returns 1/5 items
Cause: Importance decay drops memories below threshold
Solution: Disable decay or use lower threshold
# Option 1: Disable decay
memory = Vidurai(enable_decay=False)
# Option 2: Use lower threshold
results = memory.recall(min_importance=0.5)
# Option 3: Use count-based recall
results = memory.recall(limit=10) # Get top 10 regardless of threshold
RL agent not learning
Problem: Q-table not growing, epsilon not decaying Cause: Not enough episodes Solution: Give it 50-100 episodes
stats = memory.get_rl_agent_stats()
if stats['episodes'] < 50:
print("Agent still learning, needs more episodes")
print(f"Current episode: {stats['episodes']}")
print(f"Exploration rate: {stats['epsilon']:.2%}")
Memory not being compressed
Problem: Token count keeps growing, no compression triggered Cause: Threshold not reached or compression disabled Solution: Check configuration
# Check current stats
stats = memory.get_memory_stats()
print(f"Tokens: {stats['tokens']}")
print(f"Threshold: {memory.compression_threshold}")
# Manual trigger
memory.trigger_compression()
# Or lower threshold
memory.compression_threshold = 0.7
Import errors
Problem: ModuleNotFoundError: No module named 'vidurai'
Cause: Not installed or wrong environment
Solution: Install in correct environment
# Check current environment
which python
# Install
pip install vidurai
# Verify
python -c "import vidurai; print(vidurai.__version__)"
Performance issues
Problem: Slow recall or compression Cause: Large memory store, inefficient queries Solution: Optimize queries and storage
# Use semantic search instead of scanning all memories
results = memory.recall(query="specific topic", limit=5)
# Periodic cleanup
memory.clear_below_threshold(0.2)
# Enable indexing (if available)
memory = Vidurai(enable_indexing=True)
Compression quality issues
Problem: Compressed memories lose critical information Cause: Too aggressive compression settings Solution: Use quality-focused profile
from vidurai.core.data_structures_v2 import RewardProfile
memory = Vidurai(
reward_profile=RewardProfile.QUALITY_FOCUSED,
compression_threshold=0.85
)
API key errors
Problem: OpenAI API key not found
Cause: Environment variable not set
Solution: Set API key
# Option 1: Environment variable
export OPENAI_API_KEY="sk-..."
# Option 2: In code
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
# Option 3: Pass to constructor
memory = Vidurai(api_key="sk-...")
Getting Help
Still stuck? Get help from:
- GitHub Issues: github.com/chandantochandan/vidurai/issues
- Discord: discord.gg/DHdgS8eA
- Documentation: Full docs
When reporting issues, include:
- Vidurai version (
vidurai.__version__) - Python version
- Minimal reproducible code
- Error messages and stack traces